An introduction to Hybrid High Order (HHO) methods with applications to incompressible fluid flows

Daniel Castanon Quiroz † and Daniele A. Di Pietro ‡

[†]IIMAS-UNAM (National Autonomous University of Mexico), Mexico City, Mexico. [‡]IMAG (Institut Montpelliérain Alexander Grothendieck), Montpellier, France.

> NEMESIS - Kick off Meeting 2024 Montpellier, France

Outline

Outline

1 Intro to the Hybrid High Order (HHO) method

[Di Pietro, Ern, and Lemaire 2014] \rightarrow First introduced [Di Pietro and Droniou 2020] \rightarrow An HHO Book with different Apps [Cicuttin, Ern and Pignet 2021] \rightarrow An HHO Book with App. in Solid Mechanics

2 HHO methods for incompressible fluid flows

[CQ and Di Pietro 2020] → Pressure-robust Navier-Stokes formulation on simplicial meshes
[CQ and Di Pietro 2023] → Pressure-robust stationary Navier-Stokes formulation on polytopal meshes
[CQ and Di Pietro 2024] → Pressure-robust time-dependent Navier-Stokes formulation on polytopal meshes

Setting: Poisson

- Let $\Omega \subset \mathbb{R}^d$, $d \ge 2$, be an open connected polytopal Lipschitz domain
- We focus on the Poisson problem: Given $f : \Omega \to \mathbb{R}$, find $u : \Omega \to \mathbb{R}$ s.t.

$$-\Delta u = f \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega$$

• Let $f \in L^2(\Omega)$. The usual weak formulation reads: Find $u \in H^1_0(\Omega)$ s.t.

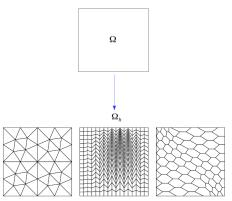
$$a(u,v) \coloneqq \int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v \quad \forall v \in H^1_0(\Omega)$$

• The well-posedness of this problem hinges on the Poincaré inequality

$$\|v\|_{L^{2}(\Omega)} \leq C_{\Omega} \|\nabla v\|_{L^{2}(\Omega)^{d}} \quad \forall v \in H^{1}_{0}(\Omega)$$

Poisson Problem.

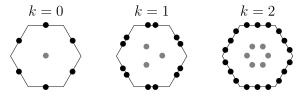
Discretisation of Ω to Ω_h



HHO in a Nutshell

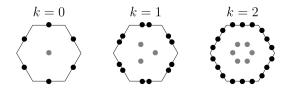
Hybrid High Order (HHO) in a nutshell

- HHO methods attach discrete unknowns to mesh faces
 - one polynomial of order $k \ge 0$ on each mesh face
- HHO methods also use element unknowns
 - one polynomial of order $k \ge 0$ on each mesh element
 - elimination by static condensation



Ex: Degrees of Freedom (DOFs) using HHO with hexagonal elements for the scalar case

HHO Dofs



• Let $k \ge 0$ and define the local Hybrid High-Order (HHO) space

$$\underline{V}_T^k := \{ \underline{v}_T = (v_T, (v_F)_{F \in \mathcal{F}_T}) : v_T \in \mathcal{P}^k(T) \text{ and } v_F \in \mathcal{P}^k(F) \text{ for all } F \in \mathcal{F}_T \}$$

• Given a polytopal mesh \mathcal{T}_h of Ω , define the global HHO space

$$\frac{V_{h}^{k}}{\sum} \coloneqq \left\{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{T}_{h}} \right\} :$$
$$v_{T} \in \mathcal{P}^{k}(T) \text{ for all } T \in \mathcal{T}_{h} \text{ and } v_{F} \in \mathcal{P}^{k}(F) \text{ for all } F \in \mathcal{T}_{h}.$$

Discrete Poincaré inequality in HHO spaces I

• We define on \underline{V}_h^k the H^1 -like seminorm

$$\|\underline{v}_{h}\|_{1,h}^{2} \coloneqq \sum_{T \in \mathcal{T}_{h}} \|\underline{v}_{T}\|_{1,T}^{2}$$

where $\|\underline{v}_{T}\|_{1,T}^{2} \coloneqq \|\nabla v_{T}\|_{L^{2}(T)^{d}}^{2} + h_{T}^{-1} \sum_{F \in \mathcal{F}_{T}} \|v_{F} - v_{T}\|_{L^{2}(F)}^{2}$ for all $T \in \mathcal{T}_{h}$

Lemma (Discrete Poincaré inequality in HHO spaces)

Denote by $\underline{V}_{h,0}^k$ the subspace of \underline{V}_h^k with vanishing boundary values. For any $\underline{v}_h \in \underline{V}_{h,0}^k$, letting $v_h \in \mathcal{P}^k(\mathcal{T}_h)$ be s.t. $(v_h)_{|T} := v_T$ for all $T \in \mathcal{T}_h$,

$$\|v_h\|_{L^2(\Omega)} \lesssim \|\underline{v}_h\|_{1,h},$$

hence $\|\cdot\|_{1,h}$ is a norm on $\underline{V}_{h,0}^k$.

Discrete local operators

• For $k \ge 0$ we define the reconstruction operator $r_T^{k+1} : \underline{V}_T^k \to \mathcal{P}^{k+1}(T)$ s.t., for all $\underline{v}_T \in \underline{V}_T^k$,

$$\begin{split} \int_{T} \nabla r_{T}^{k+1} \underline{v}_{T} \cdot \nabla w &= -\int_{T} v_{T} \Delta w + \sum_{F \in \mathcal{F}_{T}} \int_{F} v_{F} (\nabla w \cdot n_{TF}) \quad \forall w \in \mathcal{P}^{k+1}(T), \\ \int_{T} r_{T}^{k+1} \underline{v}_{T} &= \int_{T} v_{T} \end{split}$$

We consider the following scheme:

• Find $\underline{u}_h \in \underline{V}_{h,0}^k$ s.t.

$$a_h(\underline{u}_h, \underline{v}_h) \coloneqq \sum_{T \in \mathcal{T}_h} a_T(\underline{u}_T, \underline{v}_T) = \int_{\Omega} f v_h \quad \forall \underline{v}_h \in \underline{V}_{h,0}^k$$

where, for all $T \in \mathcal{T}_h$,

$$a_T(\underline{u}_T, \underline{v}_T) \coloneqq \int_T \nabla r_T^{k+1} \underline{u}_T \cdot \nabla r_T^{k+1} \underline{v}_T + s_T(\underline{u}_T, \underline{v}_T)$$

and the symmetric semi-definite stabilization bilinear form s_T satisfies

$$\left\|\underline{\nu}_{T}\right\|_{1,T}^{2} \lesssim a_{T}(\underline{\nu}_{T},\underline{\nu}_{T}) \lesssim \left\|\underline{\nu}_{T}\right\|_{1,T}^{2} \quad \forall \underline{\nu}_{T} \in \underline{V}_{T}^{k}$$
(ST1)

Error analysis I

• Let
$$\underline{I}_{h}^{k}: H^{1}(\Omega) \to \underline{V}_{h}^{k}$$
 be the HHO interpolator s.t.

$$\underline{I}_{h}^{k} v \coloneqq ((\pi_{\mathcal{P}^{k}(T)} v)_{T \in \mathcal{T}_{h}}, (\pi_{\mathcal{P}^{k}(F)} v)_{F \in \mathcal{F}_{h}}) \quad \forall v \in H^{1}(\Omega)$$

• For estimating the error

$$\underline{e}_h \coloneqq \underline{u}_h - \underline{I}_h^k u \in \underline{V}_{h,0}^k$$

• We define the consistency error $\mathcal{E}_h(u; \underline{v}_h)$ for all $\underline{v}_h \in \underline{V}_{h,0}^k$ such that

$$\mathcal{E}_h(u;\underline{v}_h) \coloneqq \int_{\Omega} f v_h - a_h(\underline{I}_h^k u, \underline{v}_h)$$

• We use the 3rd Strang Lemma (J. Droniou's presentation):

$$\|\underline{u}_{h} - \underline{I}_{h}^{k}u\|_{1,h} \leq \sup_{\underline{v}_{h} \in \underline{V}_{h,0}^{k} \setminus \{\underline{0}\}} \frac{\mathcal{E}_{h}(u; \underline{v}_{h})}{\|\underline{v}_{h}\|_{1,h}}$$

Error analysis II

Doing some algebra, we get

$$\begin{split} \mathcal{E}_{h}(\boldsymbol{u};\underline{\boldsymbol{v}}_{h}) &= \sum_{T \in \mathcal{T}_{h}} \int_{T} \underbrace{\left[\nabla \boldsymbol{u} - \nabla \boldsymbol{r}_{T}^{k+1}(\underline{\boldsymbol{t}}_{T}^{k}\boldsymbol{u}) \right] \cdot \nabla \boldsymbol{v}_{T}}_{\mathcal{T}_{2}} & \underbrace{+ \sum_{T \in \mathcal{T}_{h}} \sum_{F \in \mathcal{F}_{T}} \int_{F} \left[\nabla \boldsymbol{u} - (\nabla \boldsymbol{r}_{T}^{k+1}(\underline{\boldsymbol{t}}_{T}^{k}\boldsymbol{u}) \cdot \boldsymbol{n}_{TF}) \right] (\boldsymbol{v}_{F} - \boldsymbol{v}_{T})}_{\mathcal{I}_{1}} \\ &= \underbrace{- \sum_{T \in \mathcal{T}_{h}} s_{T}(\underline{\boldsymbol{t}}_{T}^{k}\boldsymbol{u}, \underline{\boldsymbol{v}}_{T})}_{\mathcal{I}_{2}} \end{split}$$

Using Cauchy–Schwarz inequalities, definition of $\|\cdot\|_{1,h}$, and optimal approximation properties of $\pi_{\varphi k+1}(T)$ we get

$$\mathfrak{T}_{1} \leq h^{k+1} |u|_{H^{k+2}(\mathcal{T}_{h})} \|\underline{v}_{h}\|_{1,h}$$

To have \mathfrak{T}_2 scale as $\mathfrak{T}_1,$ we further assume polynomial consistency:

$$s_T(\underline{l}_T^k \mathbf{w}, \underline{v}_T) = 0 \quad \forall (\mathbf{w}, \underline{v}_T) \in \mathcal{P}^{k+1}(T) \times \underline{V}_T^k$$
(ST2)

Error analysis III

And using again the optimal approximation properties of $\pi_{\mathcal{P}^{k+1}(T)}$, we get

$$\mathfrak{T}_2 \leq h^{k+1} |u|_{H^{k+2}(\mathcal{T}_h)} \|\underline{v}_h\|_{1,h}$$

Theorem (Error estimate for the HHO scheme)

Denote by $u \in H_0^1(\Omega)$ the solution to the Poisson problem and by $\underline{u}_h \in \underline{V}_h^k$ its HHO approximation. Then, under (ST1)–(ST2), and further assuming $u \in H^{k+2}(\mathcal{T}_h)$, it holds

$$\|\underline{u}_{h} - \underline{I}_{h}^{k}u\|_{1,h} \leq \frac{h^{k+1}}{\|u\|_{H^{k+2}(\mathcal{T}_{h})}}$$

$$\left\|\underline{\nu}_{T}\right\|_{1,T}^{2} \lesssim a_{T}(\underline{\nu}_{T},\underline{\nu}_{T}) \lesssim \left\|\underline{\nu}_{T}\right\|_{1,T}^{2} \quad \forall \underline{\nu}_{T} \in \underline{V}_{T}^{k} \tag{ST1}$$

$$s_T(\underline{I}_T^k w, \underline{v}_T) = 0 \quad \forall (w, \underline{v}_T) \in \mathcal{P}^{k+1}(T) \times \underline{V}_T^k$$
(ST2)

The Stokes Problem

- Let $\Omega \subset \mathbb{R}^d$, $d \in \{2, 3\}$, be an open, bounded, simply connected polytopal domain with Lipschitz boundary $\partial \Omega$
- Given a body force $f \in L^2(\Omega)^d$. We consider the problem:

Find $(\boldsymbol{u}, p) \in H_0^1(\Omega)^d \times L_0^2(\Omega)^d$ such that

$$\begin{aligned} \boldsymbol{\nu}\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) + \boldsymbol{b}(\boldsymbol{v},\boldsymbol{p}) &= \boldsymbol{\ell}(\boldsymbol{f},\boldsymbol{v}) \quad \forall \boldsymbol{v} \in H_0^1(\Omega)^d, \\ -\boldsymbol{b}(\boldsymbol{u},q) &= 0 \qquad \forall q \in L^2(\Omega)^d, \end{aligned}$$

where $\nu > 0$ is the fluid viscosity, and

$$a(\mathbf{w},\mathbf{v}) \coloneqq \int_{\Omega} \nabla \mathbf{w} : \nabla \mathbf{v}, \quad b(\mathbf{v},q) \coloneqq -\int_{\Omega} (\nabla \mathbf{v})q, \quad \ell(f,\mathbf{v}) \coloneqq \int_{\Omega} f \cdot \mathbf{v}$$

Motivation: Robust Numerical Methods

 We call a numerical method "pressure-robust" ([Linke 2014]) if the discretisation error of the velocity is "independent of the pressure", i.e.,

$$\|\boldsymbol{u}_h - \boldsymbol{u}\|_{L^2(\Omega)^d} \leq Ch^r \|\boldsymbol{u}\|_{H^s(\Omega)^d},$$

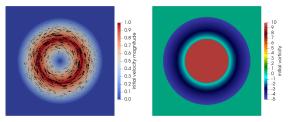
where u_h is the approximation of the solution u, h is the mesh size, C is a constant independent of the pressure p, and r, s are positive integers

If *f* = ∇φ for φ ∈ *H*¹(Ω), then this body force is absorbed by the pressure gradient, not by *u*

Motivation: Pressure Robustness

Example: The Gresho vortex problem with translation in \mathbb{R}^2

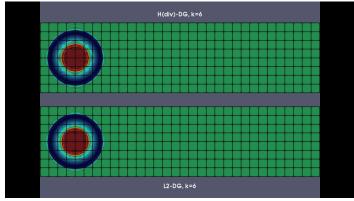
- Time dependent problem.
- The initial condition is constructed such that:
 - The vorticity $\nabla \times u$ is always constant
 - The field force is f = 0, and $v = 10^{-5}$
- Periodic boundary conditions
- Example/simulation taken from [Gauger et. al. 2019] and [Schroeder 2019]



Initial condition: \boldsymbol{u}_0 and its vorticity $\nabla \times \boldsymbol{u}_0$

Motivation: Pressure Robustness

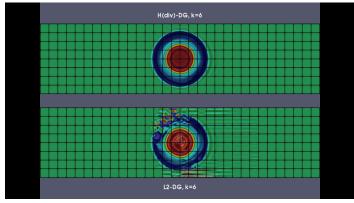
Example: The Gresho vortex problem with translation in \mathbb{R}^2



Vorticity $\nabla \times \boldsymbol{u}$ at t = 0

Motivation: Pressure Robustness

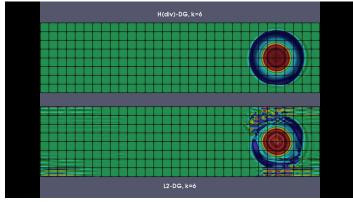
Example: The Gresho vortex problem with translation in \mathbb{R}^2



Vorticity $\nabla \times \boldsymbol{u}$ at t = 1.5

Motivation: Pressure Robustness

Example: The Gresho vortex problem with translation in \mathbb{R}^2



Vorticity $\nabla \times \boldsymbol{u}$ at t = 3

The HHO Space

Objective

To design HHO discretization methods on general meshes for incompressible fluid problems

such that the velocity error estimates are independent from the pressure

The HHO Space

The HHO Space

• The global spaces of discrete unknowns for the velocity and the pressure, respectively accounting for the wall boundary condition and the zero-average condition, are

$$\underline{\underline{U}}_{h,0}^{k} \coloneqq \left\{ \underline{\underline{\nu}}_{h} = ((\underline{\nu}_{T})_{T \in \mathcal{T}_{h}}, (\underline{\nu}_{F})_{F \in \mathcal{T}_{h}}) \in \underline{\underline{U}}_{h}^{k} : \underline{\nu}_{F} = 0 \quad \forall F \in \mathcal{F}_{h}^{b} \right\},$$

$$\underline{P}_{h,0}^{k} \coloneqq \mathcal{P}^{k}(\mathcal{T}_{h}) \cap L_{0}^{2}(\Omega)^{d}$$

Local Pressure-Velocity Coupling I

• Let an element $T \in \mathcal{T}_h$ be fixed. We define the local discrete divergence operator $D_T^k: \underline{U}_T^k \to \mathcal{P}^k(T)$ as follows:

For $\underline{v}_T \in \underline{U}_T^k$, $\underline{D}_T^k \underline{v}_T$ is such that, for all $q \in \mathcal{P}^k(T)$,

$$\int_{T} D_{T}^{k} \underline{\boldsymbol{\nu}}_{T} q = -\int_{T} \boldsymbol{\nu}_{T} \cdot \nabla q + \sum_{F \in \mathcal{F}_{T}} \int_{F} \boldsymbol{\nu}_{F} \cdot \boldsymbol{n}_{TF} q$$

• The operator D_T^k satisfies the commutating property

$$D_T^k \underline{I}_T^k \mathbf{v} = \pi_T^k (\nabla \cdot \mathbf{v}) \qquad \forall \mathbf{v} \in H^1(T)^d$$

Local Pressure-Velocity Coupling II

• For the pressure-velocity coupling, we define the bilinear form $b_h : \underline{U}_h^k \times \mathcal{P}_{h,0}^k(\mathcal{T}_h) \to \mathbb{R}$ such that

$$b_h(\underline{\mathbf{v}}_h, q_h) \coloneqq \sum_{T \in \mathcal{T}_h} \int_T -(D_T^k \underline{\mathbf{v}}_h) q_h$$

• *Stability*. It holds, for all
$$q \in P_{h,0}^k(\mathcal{T}_h)$$
,

$$\|q\|_{L^{2}(\Omega)} \lesssim \sup_{\underline{\nu}_{T} \in \underline{U}_{h,0}^{k}, \|\underline{\nu}_{h}\|_{1,h}=1} b_{h}(\underline{\nu}_{h}, q_{h})$$

Robustness with respect to pressure

• The weak Stokes problem: Find $(\boldsymbol{u}, p) \in H_0^1(\Omega)^d \times L_0^2(\Omega)^d$ such that

$$\begin{aligned} \boldsymbol{v}\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) + \boldsymbol{b}(\boldsymbol{v},\boldsymbol{p}) &= \boldsymbol{\ell}(\boldsymbol{f},\boldsymbol{v}) \quad \forall \boldsymbol{v} \in H_0^1(\Omega)^d, \\ -\boldsymbol{b}(\boldsymbol{u},\boldsymbol{q}) &= 0 \qquad \forall \boldsymbol{q} \in L^2(\Omega)^d \end{aligned}$$

• To make it robust we approximate $\ell(f, v)$ by $\ell_h : L^2(\Omega) \times \underline{U}_h^k \to \mathbb{R}$ the bilinear form is

$$\boldsymbol{\ell}_h(\boldsymbol{f}, \underline{\boldsymbol{v}}_h) \coloneqq \sum_{T \in \mathcal{T}_h} \int_T \boldsymbol{f} \cdot \boldsymbol{R}_T^k \underline{\boldsymbol{v}}_T,$$

where $\mathbf{R}_T^k : \underline{U}_T^k \to \text{a conformal subspace of } \mathbf{H}_{\text{div}}(T)$.

- See [Di Pietro, Ern, Linke, and Schieweck 2016] → HHO robust method for the Stokes problem using simplicial meshes
- Need to extend the above method on polytopal meshes

Velocity Reconstruction in $\mathbf{H}_{div}(T)$ I

- Let an element $T \in \mathcal{T}_h$ be fixed¹, and let \mathfrak{T}_T a regular simplicial subdivision of TFor $\tau \in \mathfrak{T}_T$, let $\mathbb{RTN}^k(\tau)$ the local Raviart–Thomas–Nédélec space of degree k
- Restrictions on \mathfrak{T}_T :

• For $k \ge 2$: All simplices in \mathfrak{T}_T have at least one common vertex denoted as x_T Two examples of submeshes \mathfrak{T}_T in \mathbb{R}^2 that satisfy the assumptions above:

Figure: Pyramidal sub

- We denote as τ a simplicial element which belongs to \mathfrak{T}_T , and as σ a face of τ
- The simplicial subdivision \mathfrak{T}_T , is used to construct local operators for each mesh element *T*, and will not modify the final size of the global system

¹We assume T is star-shaped with respect to a ball.

Velocity Reconstruction in $\mathbf{H}_{div}(T)$ II

• We introduce the following space generated by the Koszul operator²:

$$\mathcal{G}^{\mathrm{c},k}(T) \coloneqq (\boldsymbol{x} - \boldsymbol{x}_T) \times \mathcal{P}^{k-1}(T)^3 \qquad \text{for } k \ge 1,$$

and define $\mathcal{G}^{c,-1}(T) \coloneqq \mathcal{G}^{c,0}(T) \coloneqq \{0\}$

• Observe that we have the decomposition:

$$\mathcal{P}^{k}(T)^{d} = \nabla \mathcal{P}^{k+1}(T) \oplus \mathcal{G}^{c,k}(T),$$

where the direct sum above is not orthogonal in general

²See [Di Pietro and Droniou 2021].

Velocity Reconstruction in $\mathbf{H}_{div}(T)$ III

 We define *R^k_T* : <u>U^k_T</u> → ℝTN^k(ℑ_T) as the first component of the solution of the following local problem: Given <u>v</u>_T ∈ <u>U^k_T</u>, find (*R^k_T*<u>v</u>_T, ψ, θ) ∈ ℝTN^k(ℑ_T) × *P^k*(ℑ_T) × *G^{c,k-1}*(*T*) such that

$$\begin{split} \boldsymbol{R}_{T}^{k} \underline{\boldsymbol{\nu}}_{T} \cdot \boldsymbol{n}_{\sigma} &= (\boldsymbol{\nu}_{F} \cdot \boldsymbol{n}_{TF})_{|\sigma} \qquad \forall \sigma \in \mathfrak{F}_{F}, \forall F \in \mathcal{F}_{T}, \\ \int_{T} (\nabla \cdot \boldsymbol{R}_{T}^{k} \underline{\boldsymbol{\nu}}_{T}) \phi &= \int_{T} (\boldsymbol{D}_{T}^{k} \underline{\boldsymbol{\nu}}_{T}) \phi \qquad \forall \phi \in \mathcal{P}^{k}(\mathfrak{T}_{T}), \\ \int_{T} \boldsymbol{R}_{T}^{k} \underline{\boldsymbol{\nu}}_{T} \cdot \boldsymbol{\xi} &= \int_{T} \boldsymbol{\nu}_{T} \cdot \boldsymbol{\xi} \qquad \forall \boldsymbol{\xi} \in \boldsymbol{\mathcal{G}}^{c,k-1}(T), \\ \int_{T} \boldsymbol{R}_{T}^{k} \underline{\boldsymbol{\nu}}_{T} \cdot \boldsymbol{w} + \int_{T} (\nabla \cdot \boldsymbol{w}) \psi + \int_{T} \boldsymbol{w} \cdot \boldsymbol{\theta} = \int_{T} \boldsymbol{\nu}_{T} \cdot \boldsymbol{w} \qquad \forall \boldsymbol{w} \in \mathbb{RTN}_{0}^{k}(\mathfrak{T}_{T}) \end{split}$$

where \mathcal{F}_T are the faces of T, \mathfrak{F}_F the subdivision of F, and $\mathbb{RTN}_0^k(\mathfrak{T}_T)$ is the subspace of $\mathbb{RTN}^k(\mathfrak{T}_T)$ with vanishes $\forall F \in \mathcal{F}_T$

(Similar construction in [Frerichs and Merdon 2022] within the conformal VEM framework)

Velocity Reconstruction in $\mathbf{H}_{div}(T)$ IV

Lemma (Properties of \mathbf{R}_{T}^{k}) [CQ and Di Pietro 2023]

The operator \mathbf{R}_T^k has the following properties:

Well-posedness and boudedness. For a given $\underline{v}_T \in \underline{U}_T^k$, there exists a unique element $R_T^k \underline{v}_T \in \mathbb{RTN}^k(\mathfrak{T}_T)$ and it holds that

$$\|\boldsymbol{v}_T - \boldsymbol{R}_T^k \underline{\boldsymbol{v}}_T \|_{L^2(T)^3} \leq h_T |\underline{\boldsymbol{v}}_T|_{1,\partial T}$$

Approximation. For all $v \in H^{k+1}(T)^d$, we have the bound

$$\|\boldsymbol{v} - \boldsymbol{R}_{T}^{k} \boldsymbol{I}_{T}^{k} \boldsymbol{v}\|_{L^{2}(T)^{3}} \leq h_{T}^{k+1} \|\boldsymbol{v}\|_{H^{k+1}(T)^{d}}$$

Consistency. For a given
$$\underline{v}_T \in \underline{U}_T^k$$
, it holds, for $k \ge 1$,

$$\boldsymbol{\pi}_T^{k-1}(\boldsymbol{R}_T^k\underline{\boldsymbol{v}}_T) = \boldsymbol{\pi}_T^{k-1}(\boldsymbol{v}_T)$$

The HHO Scheme and the Error Estimate

The Discrete Problem

• The HHO discretization of the Stokes problem then reads: Find $(\underline{u}_h, p_h) \in \underline{U}_{h,0}^k \times P_h^k$ such that

$$\nu a_h(\underline{u}_h, \underline{v}_h) + b_h(\underline{v}_h, p_h) = \ell_h(f, \underline{v}_h) \quad \forall \underline{v}_h \in \underline{U}_{h,0},$$
(2.5a)

$$-b_h(\underline{\boldsymbol{u}}_h, q_h) = 0 \qquad \qquad \forall q_h \in \mathcal{P}^k(\mathcal{T}_h). \tag{2.5b}$$

Theorem (Convergence) [CQ and Di Pietro 2023]

۱

Let $(\boldsymbol{u}, p) \in H_0^1(\Omega)^d \times L_0^2(\Omega)$ be a solution to the Stokes equations, and $(\underline{\boldsymbol{u}}_h, p_h) \in \underline{\boldsymbol{U}}_h^k \times P_h^k$ be a solution to the HHO scheme (2.5). Then, it holds:

$$\|\underline{\boldsymbol{u}}_{h} - \underline{\boldsymbol{I}}_{k}^{h} \boldsymbol{u}\|_{1,h} \leq Ch^{k+1} \|\boldsymbol{u}\|_{H^{k+2}(\mathcal{T}_{h})^{d}}$$

Extension to Navier–Stokes I

The Discrete Problem

• Find
$$(\underline{u}_h, p_h) \in \underline{U}_{h,0}^k \times P_h^k$$
 such that

$$\nu a_{h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) + t_{h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) + b_{h}(\underline{\boldsymbol{v}}_{h},p_{h}) = \ell_{h}(\boldsymbol{f},\underline{\boldsymbol{v}}_{h}) \quad \forall \underline{\boldsymbol{v}}_{h} \in \underline{\boldsymbol{U}}_{h,0},$$
(2.6a)

$$-b_h(\underline{\boldsymbol{u}}_h, q_h) = 0 \qquad \forall q_h \in \mathcal{P}^k(\mathcal{T}_h)$$
 (2.6b)

where

$$\begin{split} t_{h}(\underline{w}_{h},\underline{v}_{h},\underline{z}_{h}) &= \sum_{T \in \mathcal{T}_{h}} \left[\int_{T} \nabla w_{T} R_{T}^{k} \underline{v}_{T} \cdot R_{T}^{k} \underline{z}_{T} - \int_{T} \nabla w_{T} R_{T}^{k} \underline{z}_{T} \cdot R_{T}^{k} \underline{v}_{T} \right] \\ &+ \sum_{T \in \mathcal{T}_{h}} \sum_{F \in \mathcal{F}_{T}} \int_{F} (w_{F} - w_{T}) \cdot R_{T}^{k} \underline{z}_{T} \left(R_{T}^{k} \underline{v}_{T} \cdot n_{TF} \right) \\ &- \sum_{T \in \mathcal{T}_{h}} \sum_{F \in \mathcal{F}_{T}} \int_{F} (w_{F} - w_{T}) \cdot R_{T}^{k} \underline{v}_{T} \left(R_{T}^{k} \underline{z}_{T} \cdot n_{TF} \right) \end{split}$$

• We use the key identity $\int_{\Omega} (\nabla \times u) \times v \cdot w = \int_{\Omega} ((v \cdot \nabla)u) \cdot w) - ((w \cdot \nabla)u) \cdot v)$

• The form t_h is non-dissipative, i.e., $t_h(\underline{w}_h, \underline{v}_h, \underline{v}_h) = 0$

Extension to Navier–Stokes II

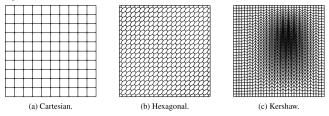
Theorem (Convergence) [CQ and Di Pietro 2023]

Let $(\boldsymbol{u}, p) \in H_0^1(\Omega)^d \times L_0^2(\Omega)$ be a solution to the Navier–Stokes equations, and $(\underline{\boldsymbol{u}}_h, p_h) \in \underline{\boldsymbol{U}}_h^k \times P_h^k$ be a solution to the HHO scheme (2.6). Then, it holds:

$$\|\underline{u}_{h} - \underline{I}_{k}^{h}u\|_{1,h} \le Ch^{k+1} \left(\|u\|_{H^{k+2}(\mathcal{T}_{h})^{d}} + \nu^{-1} \|u\|_{W^{1,4}(\Omega)^{d}} \|u\|_{W^{k+1,4}(\mathcal{T}_{h})^{d}} \right)$$

Numerical Test: Lid-Driven Cavity I

- Domain: $[0, 1] \times [0, 1]$. BCs: u = 0 at the walls, and u = (1, 0) at the top
- Body force f = 0
- Using Polynomial approximation: k = 1. Reynolds number $Re = v^{-1}$
- Re = 1,000
- Using 3 different meshes:

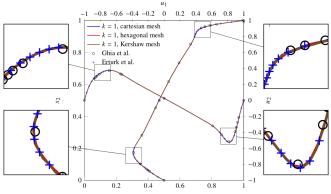


Meshes (coarser version) used for the Lid-Driven Cavity

• Number of DOFs after static condensation: Cartesian-58240, Hexa-339521, Kershaw-246345

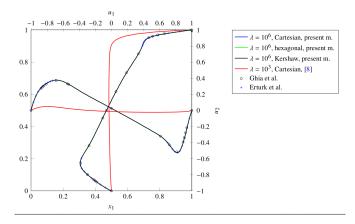
Numerical Test: Lid-Driven Cavity II

Comparison with reference solution [Erturk, Corke, Gökçöl 2005] and [Ghia, Ghia, Shin 1982] for *Re* = 1,000



Numerical Test: Lid-Driven Cavity III

- To check the robustness of the method we run the same test case for Re = 1,000, but with $f = \lambda \nabla \psi$, where $\psi = \frac{1}{2}(x^3 + y^3)$
- Comparison against the original HHO formulation of [Botti, Di Pietro, and Droniou 2019]



Conclusion

- Pressure robustness for the time dependent Navier–Stokes problem: [CQ and Di Pietro 2024] to appear soon!
- Getting pressure robustness without \mathfrak{T}_T : Use a variational formulation where $u \in \mathbf{Hcurl}(\Omega)$
 - See [Beirão da Veiga, Dassi, Di Pietro and Droniou 2022] for the Stokes problem using the DDR/VEM frameworks
 - See [Di Pietro, Droniou and Qian 2024] for the Navier–Stokes problem using the DDR framework

Thank you for your attention!

You can download this presentation @ danielcq-math.github.io

References I

[Botti, Di Pietro, Droniou 2019] Botti, L., Di Pietro, D. A., and Droniou, J. A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device. Journal of Computational Physics, 2019.

[Beiräo da Veiga et. al. 2022] L. Beirão da Veiga, F. Dassi, D. A. Di Pietro, and J. Droniou Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes. Comput. Meth. Appl. Mech. Engrg., 2022, 397(115061).

[CQ and Di Pietro 2020] Castanon Quiroz, D., and Di Pietro, D. A. A Hybrid High-Order method for the incompressible Navier-Stokes problem robust for large irrotational body forces. Comput. Math. Appl.,79-9, 2020. https://doi.org/10.1016/j.canwa.2019.12.005

[CQ and Di Pietro 2023] Castanon Quiroz, D., and Di Pietro, D. A. A pressure-robust HHO method for the solution of the incompressible Navier-Stokes equations on general meshes. IMA Journal of Numerical Analysis, published online April 2023. https://doi.org/10.1093/imanum/drad007

[CQ and Di Pietro 2024] Castanon Quiroz, D., and Di Pietro, D. A.

A Reynolds-semi-robust and pressure robust Hybrid High-Order method for the time dependent incompressible Navier-Stokes equations on general meshes. In Preparation.

[Cicuttin, Ern and Pignet 2021] Cicuttin, M., Ern, A., and Pignet, N. Hybrid high-order methods. A primer with application to solid mechanics. SpingerBriefs in Mathematics, 2021.

References II

[Di Pietro and Droniou 2020] Di Pietro, D. A., and Droniou, J. *The Hybrid High-Order Method for Polytopal Meshes - Design, Analysis and Applications.* Number 19 in Modeling, Simulation and Applications Springer International Publishing, 2020.

[Di Pietro and Droniou 2021] Di Pietro, D. A., and Droniou, J. An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincare inequalities, and consistency. Found. Comput. Math. (2021).

[Di Pietro, Jroniou and Qian 2024] D. A. Di Pietro, J. Droniou, and J. J. Qian A pressure-robust Discrete de Rham scheme for the Navier–Stokes equations. Comput. Meth. Appl. Mech. Engrg., 2024, 421(116765).

[Di Pietro, Ern, Lemaire 2014] Di Pietro, D. A., Ern, A., and Lemaire, S. An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators.

Computational Methods in Applied Mathematics, 2014.

[Di Pietro, Ern, Linke, and Schieweck 2016] Di Pietro, D. A., Ern, A., Linke, A., and Schieweck, F. A discontinuous skeletal method for the viscosity-dependent Stokes problem. Computer Methods in Applied Mechanics and Engineering, vol. 306, 2016.

[Erturk, Corke, Gökçöl 2005] Erturk, E., Corke, T. C., and Gökçöl, C. Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds. Int. J. Numer. Meth. Fluids, 2005.

[Frerichs and Merdon 2022] Frerichs, D., and Merdon, C.

Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem.

IMA Journal of Numerical Analysis, Volume 42, Issue 1, January 2022.

References III

[Gauger et. al. 2019] Gauger, N.R., Linke, A. and Schroeder, P.W.

On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond.

SMAI Journal of Computational Mathematics. Volume 5 (2019), p. 89-129.

[Ghia, Ghia, Shin 1982] Ghia, U., Ghia, K.N., and Shin, C.T.

High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys., 1982.

[Linke 2014] Linke, A.

On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime. Comput. Methods Appl. Mech. Engrg. 268 (2014) 782–800.

[Schroeder 2019] Schroeder, P.W.

Robustness of High-Order Divergence-Free Finite Element Methods for Incompressible Computational Fluid Dynamics PhD Dissertation, Georg-August-Universität Göttingen, 2019.